Quick Start Guide¶
Get up and running with Labelformat in minutes! This Quick Start Guide provides simple, copy-paste examples to help you convert label formats effortlessly.
Scenario 1: Convert COCO to YOLOv8 Using CLI¶
Step 1: Prepare Your Files¶
Ensure you have the following structure:
project/
├── coco-labels/
│ └── train.json
├── images/
│ ├── image1.jpg
│ └── image2.jpg
Step 2: Run the Conversion Command¶
Open your terminal, navigate to your project directory, and execute:
labelformat convert \
--task object-detection \
--input-format coco \
--input-file coco-labels/train.json \
--output-format yolov8 \
--output-file yolo-labels/data.yaml \
--output-split train
Step 3: Verify the Output¶
Your project structure should now include:
project/
├── yolo-labels/
│ ├── data.yaml
│ └── labels/
│ ├── image1.txt
│ └── image2.txt
Scenario 2: Convert YOLOv8 to COCO Using Python API¶
Step 1: Install Labelformat¶
If you haven't installed Labelformat yet, do so via pip:
pip install labelformat
Step 2: Write the Conversion Script¶
Create a Python script, convert_yolo_to_coco.py
, with the following content:
from pathlib import Path
from labelformat.formats import COCOObjectDetectionOutput, YOLOv8ObjectDetectionInput
# Load YOLOv8 labels
yolo_input = YOLOv8ObjectDetectionInput(
input_file=Path("yolo-labels/data.yaml"),
input_split="train"
)
# Convert to COCO format and save
coco_output = COCOObjectDetectionOutput(
output_file=Path("coco-from-yolo/converted_coco.json")
)
coco_output.save(label_input=yolo_input)
print("Conversion from YOLOv8 to COCO completed successfully!")
Step 3: Execute the Script¶
Run the script:
python convert_yolo_to_coco.py
Step 4: Check the COCO Output¶
Your project should now have:
project/
├── coco-from-yolo/
│ └── converted_coco.json
Scenario 3: Convert Labelbox Export to Lightly Format¶
Step 1: Export Labels from Labelbox¶
Ensure you have the Labelbox export file, e.g., labelbox-export.ndjson
.
Step 2: Run the Conversion Command¶
labelformat convert \
--task object-detection \
--input-format labelbox \
--input-file labelbox-export.ndjson \
--category-names cat,dog,fish \
--output-format lightly \
--output-folder lightly-labels/annotation-task
Step 3: Verify the Lightly Output¶
Your project structure should include:
project/
├── lightly-labels/
│ ├── annotation-task/
│ │ ├── schema.json
│ │ ├── image1.json
│ │ └── image2.json